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A scheme for grid optimization for the boundary element method is 
developed. The scheme utilizes the functional behavior of unknowns 
along the boundary. The functional behavior of these unknowns is 
estimated by a local eigenfunction analysis performed at certain critical 
points on the boundary. Based on this eigenfunction analysis, the user 
can construct an optimal grid with certain tolerance, in a preprocessor, 
before the integral equations are solved. The relationships between this 
tolerance and two error norms are established through numerical 
experiments. It is shown that the tolerance provides excellent upper 
bounds for the error norms. As a result, the user gets an idea about the 
quality of the solution even before the integral equations are solved. 
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INTRODUCTION 

Scientists and engineers have acquired the ability to solve 
partial differential equations in domains of complex shape 
through the high state of development of numerical 
methods. The construction of a suitable grid is the initial 
step in any such method. In the boundary element method 
(BEM), only the boundary of the domain is discretized. 
Since certain conditions are specified at the boundary, a 
natural question one might ask is “can the specified condi- 
tions be utilized to construct an optimal grid?” However, 
for the domain methods, e.g., finite element and finite dif- 
ference, one does not have the opportunity of asking this 
question. It is shown in this paper that an optimal grid can 
be constructed from the knowledge of the boundary condi- 
tions. The scheme is developed for the Laplace problem in 
two dimensions posed within a domain with straight 
boundaries. Although the application of the scheme for 
curved boundaries is not clear at this stage, future develop- 
ments for such applications are anticipated. 

The philosophy of smart algorithms has been sum- 
marized by Oden [ 1 ] through few key questions: 

(1) How reliable are the computed results? 

(2) How does one know that a mesh will produce a 
reasonable solution? 

(3) What can be done to enhance the accuracy? 

(4) How can the best possible results be obtained for the 
least effort? 

By answering these questions, we now compare the merits 
of the proposed method with that of the existing methods. 

The first question is usually answered indirectly by 
solving a problem in a “good” mesh, and in a “better” mesh. 
If the first n digits in the numbers in these two sets of solu- 
tions are same, then one assumes the solution to be accurate 
up to n digits. Through numerical experiments, using the 
present scheme, it can be shown that one can provide an 
upper bound for certain error norms, even before the 
discretized equations are solved. The user then knows, 
beforehand, what to expect and can estimate how much 
computational effort is required to attain a certain level of 
accuracy. 

In the existing methods, the second question can only be 
answered after the problem is solved at least once and a 
local error indicator is calculated. In the BEM, the 
unknown function is expressed as an integral. In this 
integral, the products of the boundary values and certain 
kernel functions appear as the integrand [a]. When 
expressed in this form, the differential equation is exactly 
satisfied. The boundary conditions need be imposed for the 
solution of a particular problem. The more rigidly one 
enforces the boundary conditions, the closer one gets to 
the desired solution. In the present scheme, one knows, 
beforehand, how appropriate the grid is, by estimating how 
closely the boundary conditions have been enforced. 

For the existing methods, one can answer the third ques- 
tion by estimating the local error indicators and deciding 
where the grid requires refinement, and how much reline- 
ment is necessary. This makes the process of creating the 
optimal grid iterative [ 3-81 and, consequently, expensive. 
In the present method, the optimal grid is generated in a 
pre-processor, even before the discretized equations are 
solved. This makes the procedure less expensive, gives the 
user the freedom to select an appropriate grid according to 
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his needs and resources, and keeps the short optimization 
process uncoupled from the lengthy solution process. 

The answer to the fourth question, as it pertains to 
the BEM, is shown in this paper to be very simple. The 
boundary conditions are utilized to develop eigenfunction 
expansions for all the relevant functions. The lengths of the 
boundary elements are determined appropriately to best 
describe the variation of the functions, dictated by the eigen- 
functions, along the boundary by utilizing the Lagrangian 
approximation polynomials. 

In the following sections, the BEM is briefly introduced, 
the algorithm for grid optimization is described, and its 
utility and advantages are shown through three example 
problems. 

BEM FORMULATION 

Let u be the potential which satisfies the equation 

V2u(x)=0 (1) 

in a polygonal domain D, shown in Fig. 1, with boundary S. 
On some portions of the boundary, marked by U in Fig. 1, 
the function u is specified; and the flux q(x) is specified on 
the portions marked by Q. The flux is defined as 

q(x)=Vu(x).n, (2) 

where n is the unit outward normal on S. The function U(Z) 
at any point z in D + S is related to the boundary values 
through the integral equation 

c(z) u(z) = js CWX, z) 4x) 
- G(x, z) q(x)1 4x1. 

For problems in two dimensions, 

(3) 

G(x, z)=ln Ix-zl, 

H(x, z)=VrG.n(x), 
(4) 

FIG. 1. The polynomial domain. 

and c(z) is known to be 

c(z) = 27c, z in D 

=CO, z on S (5) 

where w is the angle between two tangents to S drawn on 
either side of z. The procedure for discretizing the integral 
equation can be found in a text on BEM [9]. 

In the present work, the approximating functions for 
representing q(x) and U(X) along the boundary are assumed 
to be linear. The main idea can easily be extended to higher 
order polynomials. However, the linear approximation has 
been found to yield excellent solutions. Although the order 
of the approximating polynomials is fixed, the optimal 
lengths of the elements along the boundary are determined 
through a minimization process. This method is somewhat 
like the r-method for grid optimization. 

The minimization process can only be initiated if one has 
some knowledge about the behavior of the functions u and 
q along the boundary. It has long been recognized that 
sharp corners and points across which the type of the 
boundary condition changes from Dirichlet to Neumann 
have a strong influence on the behavior on the potential and 
flux. It has been found that singularities are often associated 
with these critical points. This singular behavior often 
corrupts the quality of the solution. In the present algo- 
rithm, these critical points will play the central role. The 
functional behavior of u and q near each of these critical 
points can be obtained by performing a local eigenfunction 
analysis. 

FUNCTIONAL BEHAVIOR OF II AND 9 

In Fig. 2a, one critical point of our polygonal domain is 
shown. By erecting a local polar coordinate system with 
the origin at the critical point, the solution of the Laplace 
equation can be written as 

u = 1 C,r” cos 18 + S),r’ sin 10. (6) 
i. 

The constants C, and S1 are unimportant in the present 
analysis. However, the eigenvalues, 2, are utilized in the 
algorithm. The eigenfunctions and eigenvalues for q can 
easily be obtained from Eq. (6). If one enforces the 
boundary conditions on the segments AB (at I3 = 0) and AG 
(at 0 = IX), the set of eigenvalues can be determined. 
One must repeat this process for all the critical points. It is 
evident that the eigenvalues depend on the boundary condi- 
tions on the adjacent segments and the angle o! subtended at 
the critical point. It can now be argued that the part of the 
segment next to A is dominated by the eigenfunctions 
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FIG. 2. Schematics for the eigenfunction analysis: (a) the critical point 
and local coordinate system; (b) the relevant eigenvalues; (c) the functional 
behavior. 

originating at A, and the rest of the segment is dominated by 
the eigenfunctions originating at B. However, the ranges of 
influence of these two sets of eigenfunctions are not known. 
For simplicity, the segment AB is divided into two equal 
subsegments, where the subsegment next to A is influenced 
by A, and the other by B. 

Considering each subsegment, one pays attention to the 
eigenvalues for u if the boundary condition on the subseg- 
ment is Q-type (Neumann), and vice versa. This rule is 
schematically shown in Fig. 2b where the mid-points of AB 
and AG are respectively denoted by M and N. This step is 
a rather intuitive one, and the reason being that on subseg- 
ment AM one must determine u from the discretized integral 
equation, and consequently one must have a grid that is 
good for such a determination. Similarly, on the subsegment 
AN, q is the unknown, and the grid should be good for this 
unknown. 

In the next step, from the set of eigenvalues identified for 
a subsegment, the smallest eigenvalue which is different 
from 0 or 1 is chosen. Since linear approximating functions 
are being used, the constant and linear variations are 
exactly represented, and one picks the first eigenfunction 
which cannot be represented exactly by the linear 
approximating functions. When quadratic approximating 

functions are used, one must pick the smallest eigenvalue 
which is different from 0, 1, and 2. In this manner, one eigen- 
function can be associated with each of the subsegments. 
This step is schematically shown in Fig. 2c. In this figure, the 
chosen eigenvalues are denoted by /i i, /1*, etc. 

In the following section, the procedure for dividing a sub- 
segment is described. A minimization process is employed 
for this purpose. This process ensures that the lengths of the 
linear elements are best suited for the variation r”, where A 
is the chosen eigenvalue for the subsegment. 

MINIMIZATION PROCEDURE 

At the beginning of the minimization process the length 
of a subsegment is normalized to 1. Such a subsegment is 
then partitioned into n-number of elements of lengths 
d, , 4, . . . . d,,. The procedure for fixing the value of n will be 
described later in this section. The function Y” is then 
approximated by employing piecewise linear interpolation 
over each element. The differences in the areas under the 
curve r”, and the assembly of trapezoids under the 
approximate representation are squared and summed to 
form a functional. This functional is then minimized to 
obtain the lengths d,, d,, . . . . d,. The IMSL subroutine 
UNLSF is used fo this purpose. After the lengths of the 
elements are obtained, the difference in area, C, between the 
smooth and piecewise curves is obtained to test the close- 
ness of the approximate representation. The computation 
time for this process is less than 1 s on a VAX/VMS 
machine. 

It must be mentioned that the number of elements, n, is 
tied to the closeness of the fit. One usually starts off with a 
desired level of accuracy E, and a small value of n (say 2). 
The value of n is increased until Z < E. 

As mentioned before, the length of a subsegment is nor- 
malized to one, and the minimization is performed over an 
interval [0, 11. However, if/i is negative, a singularity will 
appear at r = 0, and in that case, fitting a linear piece to a 
point at infinity would be meaningless. In such a situation, 
the range is modified to [a, 11, where r~ 4 1. In general 
0 d (T < 1, where CJ = 0 corresponds to the non-singular case. 

For a singular case, the description of the singular 
behavior improves as the value of g is reduced. For a fixed 
E, the reduction of 0 below 0.01 causes the value of n to 
increase rapidly. A large number of very small elements 
packed near the singularity makes the computation expen- 
sive, and also the conditioning of the coefficient matrix 
deteriorates. The author’s experiments with different values 
of g show that c = 0.01 is a good choice. 

After performing the minimization in a singular case, the 
non-zero 0 is added to the length of the element farthest 
away from the singularity while maintaining the fineness of 
the grid near the singularity. 
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NUMERICAL EXAMPLES 

Three example problems are considered in this section. 
The chosen problems have either analytical or published 
numerical solutions available for comparison. 

In order to gage the accuracy of the BEM solutions, two 
different kinds of error norms are calculated. The first error 
norm is based on the “integrated absolute boundary error” 
which will be denoted by 6. This error norm is defined as 

(0.1) 

q=o 

In Eq. (7),J’is the unknown on the boundary, i.e.,f = u on Y 

4 Q 
u=o (1 

a Q-type boundary and vice versa, and the subscript BEM 
denotes the BEM solution. The integral over dS denotes 
the integration along the boundary and is obtained by 
calculating the absolute error at all the nodes and 
employing the trapezoidal rule. It must be mentioned at this 
point thatfexact is in general unknown, and the norm 6 is not 
obtainable. In this work, 6 is calculated in model test 
problems to illustrate the performance of the scheme and to 
establish a relationship between E and 6. 

The second error norm is based on the “integrated 

A 

I 
r2 

-r2 

relative domain error” which will be denoted by A. This 
error norm is defined as 

r3 

- r2 

A= 
s 

Iu exact - %Ml dD 
IU,,,,t/ 

(8) 

D C 

The integration in Eq. (8) over the domain D is performed 
by calculating the relative error at uniformly distributed 
points and employing one point integration over square 
shaped area patches. In general, u,,,,~ is unknown and the 
norm A is not obtainable. The norm A is calculated for 
model example problems to establish a relationship between 
E and A. 

EXAMPLE 1. The problem is posed in a 1 x 1 square as 
shown in Fig. 3a. The boundary conditions are consistent 
with the exact solution 

u = cash x sin y. (9) 

In Fig. 3b, the chosen eigenfunctions approaching from the 
two ends of each side of the square domain are shown. 
There is no singular point on the boundary, and conse- 
quently CJ is zero for all subsegments. In Table I, the number 
of elements required on each side of the square are given for 
three values of the tolerance E. 

In order to provide the reader with an idea about the size 
of the elements, the lengths of the elements along the 

q = 0.5403 cash x 
:l.l) 

q=l.l752siny a 

,)- 

b 

r2- 

FIG. 3. Example 1: (a) the definition of the problem; (b) functional 
behavior. 

segment BC (starting from the edge B) are given below for 
the tolerance E = 0.05: 

0.1690 0.1236 0.1082 0.0992 0.1667 0.1667 0.1667. 

The first four elements are in accordance with the r3 varia- 
tion, and the size of these elements gets smaller as we move 
away from the edge B while the r3 function increases rather 
sharply. The last three elements correspond to the r* varia- 
tion, and they are all equal in length. It has been observed 
that r* variation forces a uniform distribution. 

The problem is solved three times with the grids shown in 
Table I, and the error norm 6 and A are calculated. The 

TABLE I 

Distribution of Elements for Various Values 
of Tolerance E for Example 1 

E Side AB Side BC Side CD Side DA 

0.05 3 7 3 I 
0.02 5 12 5 12 
0.005 10 23 10 23 

-- _ 



TABLE II 

Error Norms for Various Values of Tolerance E 
for Example 1 

E b A 

0.05 1.958 x 10-Z 8.553x 10m3 
0.02 7.704x 1om3 3.541 x lo-) 
0.005 2.046x 10m3 8.497x lo-4 

values of the norms for various values of the tolerance E are 
shown in Table II. 

A close examination of the data in Table II makes it 
tempting to tit a linear relationship between the tolerance 
and error norms. Such relationships are given as 

6 = kE, A=KE. (10) 

It is natural to anticipate that the proportionality constants 
k and K would be dependent on the shape of the domain. 
But if the values of k and K are less than one, then it is clear 
that the tolerance E that is enforced in the pre-processor for 
grid optimization provides an excellent upper bound for the 
errors. A crude calculation reveals that k = 0.39 and 
K = 0.17. Another fact which will be given as a mere obser- 
vation is that the absolute boundary error (the integrand in 
Eq. (7)) was found to be uniform over all the nodes. This 
probably means that a good grid distributes the error 
uniformly along the boundary. 

As mentioned before, the norms 6 and A are usually not 
obtainable. However, the value of the tolerance E can be 
enforced at the optimization stage, and then one can claim 
that A and 6 are at least one order smaller than the 
tolerance. 

EXAMPLE 2. This problem posed in Fig. 4a shows that 
the boundary has a re-entrant corner at 0. For this example, 
the results obtained by Papamichael and Whiteman [lo] 
by using a numerical conformal transformation method are 
available for comparison. In Fig. 4b, the chosen eigen- 
functions approaching from the two edges of each side are 
shown. 

The lengths of 13 elements that are placed on the side OA 
are given below for the tolerance E = 0.01: 

0.0433 0.1031 0.1533 0.2002 0.0426 0.0440 0.0457 

0.0477 0.0502 0.0534 0.0582 0.0672 0.0910 

The first four elements are consistent with r213 and are 
crowded toward point 0; the last nine elements are 
consistent with r3 and are crowded toward the center of the 
side OA. 

This example problem was solved three times for three 
different tolerance values, and the error norm A was 

q=o 

B T 
“= 

- r3 r3- 

C B 

a 

b 
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-r3 r2- 

FIG. 4. Example 2: (a) the definition of the problem; (b) functional 
behavior. 

calculated. For this calculation, Papamichael and 
Whiteman’s [lo] solution was used as u,,,,~, and 75 square- 
shaped area patches were used for the integration over the 
domain D. For this problem it was impossible to calculated 
6, because the f,,,,, on the boundary is not available. In 
Table III, the variation of A with E is shown. Also shown in 
this table are the number of boundary nodes that have been 
required in each of the cases. Assuming a linear relationship 
between E and A, we find the constant of proportionality K 
to be 0.06. This further established that the tolerance is, in 

TABLE III 

Domain Error for Various Tolerances for Example 2 

E A No. of Nodes 

0.02 1.247x lo-’ 66 
0.01 5.281 x 10m4 82 
0.005 2.795x 10m4 130 
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FIG. 5. The definition of problem in Example 3, and the functional behavior. 

D (8.5.2) 

q=o 

C (8.5,1) 

u=o 

8 (8.5,O) 

fact, an excellent bound for the “integrated relative domain BC. The distribution of elements on different segments of 
error.” the boundary are 

EXAMPLE 3. In this example, the computational effort 
involved in the present method is compared with the effort 
involved in a customary adaptive scheme based on the 
p-method [6]. For this purpose we have picked a problem 
which involves a singular point. The problem is posed in 
Fig. 5. The grid was developed for E = 0.02, and the 0 on the 
singular subsegment adjacent to C was chosen to be 0.01. 
In order to show the packing of nodes near the singularity 
at C, the lengths of elements on the side BC (starting at 
edge B) are 

0.1101 0.0808 0.0706 0.0648 0.0608 

0.0577 0.0553 0.1756 0.1192 0.0807 

0.0530 0.0336 0.0203 0.0116 0.0062 

The first seven lengths correspond to the behavior r3 over 
the half of side BC next to point B. The last eight lengths 
correspond to the behavior r-l/’ over the rest of the side 

TABLE IV 

Comparison of Present Method with p-Method 
of Grid Refinement [6] 

Segment AB : 12 

Segment BC : 15 

Segment CD : 11 

Segment DE: 5 

Segment EA : 1 

In Table IV, the present solution at a few selected points 
near the singularity, at (8.5, l), is compared with two other 
solutions obtained by Chakravarty [6]. The solution in the 
second column was obtained on a uniform grid with quad- 
ratic elements by solving 293 equations. The solution in the 
third column was obtained by first solving the problem in a 
uniform grid with 77 nodes, then updating the grid using the 
p-method, and then solving the problem a second time on 
the improved grid. In the improved grid, 149 nodes were 
used. 

The data in Table IV shows that, although the adaptive 
grid is four times as efficient compared to the uniform grid 
(number of nodes reduced to half ), the present method is 36 
times as efficient compared to the uniform grid (number of 
nodes reduced to i). 

CONCLUSION 

(60.5) 0.4910 0.4910 0.4913 

(6, 1.0) 0.9874 0.9874 0.9880 

(6, 1.5) 1.4911 1.4911 1.4921 

(7,O.S) 0.4557 0.4557 0.4564 

(7, 1.0) 0.9392 0.9392 0.9402 

(7, 1.5) 1.4586 1.4585 1.4599 

(830.5) 0.2690 0.2689 0.2698 

(8, 1.0) 0.6968 0.6965 0.6974 

(8. 1.5) 1.3339 1.3337 1.3346 

Uniform grid [6] Adaptive grid [6] Present method 
Coordinates 293 nodes 149 nodes 49nodes 

The method for grid optimization using local eigenfunc- 
tion expansions near critical points has been shown to be an 
excellent tool for grid generation. The advantages of the 
method are as follows: 

The grid is optimized in a preprocessor even before the 
discretized integral equations are solved. In this non- 
iterative method, the only information that is required for 
grid generation is the shape of the domain and the boundary 
conditions. Because of the non-iterative nature of the algo- 
rithm, the computational effort involved in the optimization 
process is much less compared to the existing adaptive 



252 AMBAR K. MITRA 

iterative techniques. In the existing techniques, an addi- 
tional task of the calculation of suitable error norms is to be 
performed. 

The tolerance value that is chosen by the user at the time 
of grid generation provides an excellent upper bound for 
error in the variables on the boundary and in the interior of 
the domain. The user can estimate the error in the final solu- 
tion while generating the grid, and before the integral equa- 
tions are solved. 

By generating the grids for several values of E, the user can 
estimate how much computer time will be expended to 
attain different levels of accuracy. The user can then pick a 
grid depending on the available resources. 

The method has been shown to perform better than the 
p-method of grid optimization. This observation has been 
validated by at least one example problem (Example 3). 

Last and probably the most convenient aspect of the 
algorithm is that any existing BEM program with no grid 
optimization capability need not be modified to acquire 
such capability. The present optimization module can 
simply be executed before entering the main solution 
module. 
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